
Scripting Interactive Environments
with Interval Scripts

Claudio Pinhanez

MIT Media Laboratory
Current Address:

IBM TJ Watson Research Center
30 Saw Mill River Road

Hawthorne – NY 10532 – USA
pinhanez@us.ibm.com

Aaron Bobick

Georgia Institute of Technology

College of Computing
801 Atlantic Dr.

Atlanta - GA 30332 – USA
bobick@cc.gatech.edu

ABSTRACT
In this paper we present a new paradigm for high-level scripting of computer characters and
stories in interactive environments called interval scripts. In this paradigm, the actions of
characters and users are associated with temporal intervals and scripting is accomplished by
establishing temporal constraints between the intervals. Unlike previous constraint-based
interaction languages, we employ a strong temporal algebra (based in Allen’s interval algebra)
with the ability to express mutually exclusive intervals and to define complex temporal
structures. To avoid the typical slowness of strong temporal algebras, we propose a method —
PNF propagation — that projects the network implicit in the script into a simpler, 3-valued
(past, now, future) network where constraint propagation can be approximately computed in
linear time. The paper introduces the interval script paradigm by referring to its current
implementation as a text-based language that was used to build three large-scale, computer-
vision-based interactive installations. The success on implementing these three very complex
projects is presented as evidence that interval scripts are a simpler and more expressive
scripting method than any currently used system for scripting interaction in interactive
environments.

RESUMO
Este artigo apresenta um novo paradigma — roteiros temporais — para a roteirização de alto
nível de personagens e estórias computacionais em ambientes interativos. Neste paradigma as
ações de personagens e usuários são associadas a intervalos temporais, enquanto que a
progressão temporal do roteiro é estabelecida através de restrições temporais entre os
intervalos. Ao contrário de outras linguages de interação baseadas em restrições, este
paradigma emprega uma álgebra temporal forte (baseada na álgebra de intervalos de Allen),
capaz de expressar ações mutuamente exclusivas e de definir complexas estruturas temporais.
A fim de evitar a lentidão normalmente associada a álgebras temporais fortes, emprega-se um
método— propagação PNF — que projeta a rede definida implicitamente pelo roteiro em
uma rede mais simples, onde os nós assumem somente três valores (past, now, future). Nesta
rede é possível fazer a propagação de restrições em tempo linear. Este artigo apresenta o
paradigma de roteiros temporais através de sua implementação atual como uma linguagem de
programação que foi extensivamente usada na construção de três instalações
computadorizadas de larga escala (baseadas em visão computacional). O sucesso obtido na
implementação destes três projetos é apresentado como evidência de que roteiros temporais
são uma maneira mais simples e expressiva de descrever interação em ambientes interativos
do que qualquer outro método atualmente em uso.

1. INTRODUCTION
The research described in this paper proposes a method to script computer characters and
interactive stories based on temporal constraints. Called interval scripts, this paradigm is
based on the encapsulation of actions and states in temporal intervals constrained by the
temporal primitives of Allen’s algebra [2]. The objective is to provide the designer of an
interactive system or complex computer graphics scenes with a tool that combines
expressiveness and simplicity. Among the desired features, we included in interval scripts
facilities for easy abstraction of actions; the ability to impose restrictions on what can happen
(negative scripting); mechanisms to infer indirectly the occurrence of users’ and characters’
actions (see also [30]); and the capacity of recovery from errors and unexpected situations.

To accomplish this, we are developing a language based on temporal constraints that also
includes some elements of traditional procedural methods. An interval script contains
descriptions of how to activate and stop the actions of the characters, but the activation of the
intervals is determined by verifying the current state of the system, comparing it with the
desired state according to the constraints, and issuing commands to start and stop action as
needed. Another characteristic of interval scripts is the de-coupling of the actual state from the
desired state which allows for the introduction of methods for recovery from errors and
increases the robustness of the system.

The idea of interval scripts has been implemented in an interval script language that we
describe with some detail in this paper. Although the concept of interval scripts can have
different implementations (as a graphics-user interface, for instance), in this paper we present
all the concepts of the interval scripts using the language.

Interval scripts proved to be essential to manage the complexity of some large-scale projects
of interactive, story-based spaces we have developed. In this paper we briefly describe three of
these projects in order to provide the reader with a sense of the difficulties involved.
Particularly, we do not believe that it would be possible to implement those systems in the
allotted time in any other language or currently used paradigm. In fact that it was possible to
build them at all is good evidence of the usefulness and appropriateness of our language.

This paper starts by reviewing the current scripting languages and identifying their
shortcomings. In sections 3 and 4 we introduce the interval script language through some
simple examples. The core of the paper is the description of the run-time engine architecture
and the theory needed to allow efficient run of temporal constraint propagation algorithms,
contained in section 5. We then explore in section 6 more complex constructions allowed by
the interval script language. Section 6 contains description of the interactive environments that
have been built using the paradigm.

2. PROBLEMS WITH CURRENT SCRIPTING TECHNIQUES
The idea of interval scripts was fueled by our dissatisfaction with the lack of methods for the
integration of characters, stories, and I/O devices in interactive environments. As described by
Cohen, systems to control interaction tend easily to become “ big messy C program(s)” ([10],
fig. 2). From the experience of “ The KidsRoom” [7], it became clear that one of the major
hurdles to the development of interesting and engaging interactive environments is that the
complexity of the control system grows faster than the complexity of the system.

2.1 State Machines and Event Loops
The most common technique for the scripting and control of interactive applications is to
describe the interaction through state machines. This is the case of the most popular language

for the developing of multimedia software, Macromedia Director’s Lingo [1]. In Lingo, the
interaction is described through the handling of events whose context is associated to specific
parts of the animation with no provisions to handle the history of the interaction nor the
management of story lines.

Video games are traditionally implemented through similar event-loop techniques. To
represent history, the only resort is to use state descriptors whose maintenance tends to
become a burden as the complexity increases. Also, the state-machine model lacks appropriate
ways to represent the duration and complexity of human action: hidden in the structure is an
assumption that actions are pin-pointed events in time (coming from the typical point-and-
click interfaces those languages are designed for) or a simple sequence of basic commands.

In the “ The KidsRoom” [7] the interaction is controlled by a system composed of a state
machine where each node has a timer and associated events. A problem with this model is that
it forces the designer to break the flow of the narrative into manageable states with clear
boundaries. In particular, actions and triggered events that can happen in multiple scenarios
have normally to be re-scripted for each node of the state machine, making incremental
developing very difficult.

2.2 Constraint-Based Scripting Languages
The difficulties involved in the use of state machines and event loops have sparkled a debate
in the multimedia research community concerning the applicability of constraint-based
programming (starting with the works of Buchanan & Zelllweger [9] and Hamakawa
& Rekimoto [14]) versus procedural descriptions (for example, [38]). In general, it is
considered that constraint-based languages are harder to learn but more robust and expressive.

Bailey et. al. [3] defined a constraint-based toolkit, Nsync, for constraint-based programming
of multimedia interfaces that uses a run-time scheduler based on a very simple temporal
algebra. The simplicity of the temporal model, in particular due to its inability to represent
non-acyclic structures, is also the major shortcoming of Madeus ([16]), CHIMP ([33]), ISIS
([19]), and TIEMPO ([40]). Other examples are TBAG [12], and Kakizaki’s work on deriving
animation from text [17].

2.3 Scripting of Computer Graphics Characters
The scripting of computer graphics characters and in particular of humanoids has attracted
considerable attention in the computer graphics field. A group of researchers has worked with
languages for scripting movements and reactions of characters, like Perlin [25], Kalita [18],
and Thalman [35]. In particular, Perlin and Goldberg have developed a language, Improv [25],
that nicely integrates the control of low-level control of geometry with middle-level primitives
such as “move”, “eat” , etc. The major shortcoming of Improv is the lack of simple methods to
synchronize and to temporally relate parallel actions.

Another line of research steams directly from Rod Brooks’ works with autonomous robots [8].
The objective of this school is to create characters with their own behaviors and desires.
Significant examples are Blumberg’s behavior control system [6], Tosa’s model for emotional
control [36], and Terzopoulos work on the interaction of sensory and behavior mechanisms
[37]. The problem with purely behavior-based characters is that they are enable to follow
stories. In [27] Pinhanez argues that there is a significant difference between computer
creatures and computer actors, the later being able to accept the high-level commands needed
for the precise timing and developing of stories. Integration of high-level commands into
behavior-based control still defies the research in the area.

Bates et. al. [4] created an environment composed of several modules that encompass
emotions, goals (Hap), sensing, language analysis, and generation. However, scripting in Hap
imposes many restrictions in the ways parallel actions can be synchronized. Also, since
planning happens at every cycle, it becomes difficult to use the system in real-time, interactive
applications with multiple characters.

2.4 Scripting Interactive Environments
Starting with the pioneer work of Myron Krueger [20], the interest in building interactive
environments, especially for entertainment, has grown in the recent years (see [5, 7] for a good
review). In the case of virtual reality, it seems that the user-centered and exploratory nature of
most interfaces facilitates the scripting the interface with state machines and event loops.
There are few references of scripting systems for VR (for example [34]). A recent example is
Alice [24], a language that allows rapid prototyping but has very few possibilities in terms of
temporal structures.

In many interactive environments the control of the interaction is left to the characters
themselves (seen as creatures living in a world). This is the case of “ ALIVE” [22], where the
mood of the CG-dog Silus commands the interaction; and also in “ Swamped” [15], where an
user-controlled chicken plays cat-and-mouse with a raccoon. In both cases, however, there is
no easy way to incorporate dramatic structure into the control system as discussed above. In
most of these cases, as well as in Galyean’s work [13], it is necessary to “hack” the behavior
structure in order to make a story flow.

3. A PROPOSAL: INTERVAL SCRIPTS
Using interval scripts to describe interaction was first proposed in [31]. The basic goal was to
overcome the limitations of traditional scripting languages as described above. The work drew
from a technique originally developed for human action recognition [30] where temporal
constraint propagation is used to determine the occurrence of actions described as a collection
of temporarily related sub-actions.

In interval scripts, all actions and states of both the users and the computer characters are
associated to the temporal interval where they occur. However, the actual beginning and
ending of the intervals are not part of the script. Instead, the script contains a description of
the temporal relations that the intervals must obey during run-time. For example, to describe
the situation where a CG character enters the image whenever the user makes a gesture, we
associate the appearance of a CG character to an interval, and the user gesture to another. To
accomplish the desired sequence of events, we put a temporal constraint stating that the end of
the gesture interval should be immediately followed by the entrance of the character. During
run-time, the interval script engine monitors the occurrence of the gesture interval. When it
finishes, the engine solicits the entrance of the CG character in an attempt to satisfy the
temporal constraint. Developing a system or scene with interval scripts is a classical case of
programming by constraints. Notice that programming by constraints always requires a run-
time engine that examines the current information and assigns new values for the different
variables of a problem to satisfy the constraints.

To model the time relationships between two intervals we employ the interval algebra
proposed by Allen [2]. The interval algebra is based on the 13 possible primitive relationships
between two intervals that are summarized in fig. 1.

Given two actions in the real world, their possible time relationship can always be described
by a disjunction of the primitive time relationships. For instance the relation meet describes
exactly the temporal constraint in the above example between the gesture interval and the
interval associated to the entrance of the CG character. If the entrance of the character could
start before the end of the gesture, the relation between the two intervals would be described
by the disjunction overlap OR meet. Of course, in a real occurrence of the intervals, only one
of the relationships actually happens.

We see several reasons to use Allen’s algebra to describe relationships between intervals.
First, no explicit mention of the interval duration or specification of relations between the
intervals’ starting and endings are required. Second, the existence of a time constraint
propagation algorithm (describe in [2]) allows the designer to declare only the relevant
relations, leading to a cleaner script. Allen’s path consistency algorithm is able to process the
definitions and to generate a refined version of the script containing only those relations and
are consistent in time. Third, the notion of disjunction of interval relationships can be used to
declare multiple paths and interactions in an story. Fourth, it is possible to determine whether
an interval is or should be happening by properly propagating occurrence information from
one interval to the others in linear time, as described later in this paper. This property is the
basis of our run-time engine which takes relationships between intervals as a description of
the interaction to occur and can determine which parts of the script are occurring, which are
past, and which are going to happen in the future by considering the input from sensing
routines.

Finally, Allen’s algebra is a strong temporal algebra that allows the expression of mutually
exclusive intervals. For instance, to state that a CG character does not perform action A and B
at the same time we simply constrain the relation between the intervals A and B to be before
OR after. That is, in every occurrence of the intervals, either A comes before B or after B, but
never at the same time. The ability of expressing mutually exclusive intervals defines different
classes of temporal algebras [23]. In general, algebras without that property allow fast
constraint satisfaction but are not expressive [39]. In particular, all previous constraint-based
interaction languages have used those weak temporal algebras [16, 19, 33, 40]. In contrast,
Allen’s algebra is very expressive and can be used in real time, in our case, just because we

A before B
A

B
A i-before B

A

B

A meet B
A

B
A i-meet B

A

B

A start B
A

B
A i-start B

A

B

A finish B
A

B
A i-finish B

B

A

A overlap B
A

B
A i-overlap B

A

B

A equal B
A

B

Allen’s primitive relationships

Figure 1. Allen's 13 pr imitive relationships between two time intervals.

have developed a fast method to compute approximations of the values that satisfy the
constraints.

4. BASIC STRUCTURES OF INTERVAL SCRIPTS
In the following sections we describe the basic capabilities of the interval script paradigm. As
mentioned before, there are multiple ways to implement the concepts described in this paper.
We chose to develop a compiler that takes a text file containing the descriptions of the
intervals and the temporal constraints between them and outputs a C++ file. The C++ file can
be compiled and, through specially defined functions, the script can be executed at run-time.

It is arguable if a text file is the adequate format for scripting interaction and stories in
comparison with a graphics user interface. We will return to this discussion later. For now, we
will describe the fundamental structures of interval scripts assuming the syntax and format of
our language. The grammar of the language is described in [28]. In most of the cases, the
constructions we examine are completely implementation independent.

4.1 Start, Stop, and State Functions
Each action or state in interval script is described by three functions:

• START: a function that determines what must be done to start the interval; however, after
its execution, it is not guaranteed that the interval has actually started.

• STOP: a function about what must be done to stop the interval; similar to START, it can
happen that the interval continues after the STOP function is executed.

• STATE: a function that computes the actual current state of the interval in terms of three
values, past, now, or future (written as P,N,F), corresponding respectively to the situation
where the interval has already happened, is happening in that moment of the time, or it has
not happened yet. STATE functions are oblivious to START and STOP functions and are
designed to provide the best assessment of the actual situation.

As we can see from the above, in interval scripts we de-coupled the wish of the occurrence of
an interval (represented by the START and STOP functions) from the actual happening of the
interval. That is, an interval script describes how an interaction or story should happen and
does not assume that response is perfect. That is simply because it is impossible to predict
how characters or devices actually react in run-time due to delays, device constraints, or
unexpected interactions. This follows the notion of “grounding” as proposed by Rodney
Brooks for autonomous robots [8]. During run-time, the interval scripts engine examines the
current state of the intervals (through the results of STATE functions) and tries to achieve a

object moves

interval script control

C++ code, devices, etc..

STATESTART STOP

N N NN N N NFFF P P

Figure 2. The structure of an interval.

set of states compatible with the temporal constraints by executing appropriately START and
STOP functions.

Figure 2 shows a typical execution of an action in interval scripts. This action corresponds to a
movement of a CG character. In this diagram time is running from left to right. As we see, the
START function is executed some time before the STATE functions actually detects the
occurrence of the action. Similarly, it takes time for the effects of the STOP call to be sensed.
In the case of interactive environments, it is fairly common that some physical devices have
significant delays. But also in computer graphics scenes it can take time for a character to start
an action because pre-conditions must be have to be achieved first. For instance, a command
for moving might be delayed because the character first must stand up. Figure 2 depicts the
best case, where the action actually happens after the START call. It is easy to see that
physical or spatial constraints can prevent an object to move. In the same way, a character
might start to move because an object bumped into him. In both cases, we would expect that
the STATE function to report the actual state of the character.

4.2 Encapsulating Code in Intervals
It is important that a scripting language communicates with low-level programming languages
that provide basic functions and device access. In our current implementation of interval
scripts, we allow the inclusion of C++ code directly into the script.

Let’s examine an example from the script of one of our experiments, the art installation called
“ It” described in more detail in the applications section of this paper. In that installation a
camera-like object appears on the screen and interacts with the user (notice that this is not the
computer graphics virtual camera, but a CG object that looks like a photographic camera).

Figure 3 shows the definition of the interval “ camera moves” in our language for interval
scripts. The definition is comprised between curly brackets determining the basic functions of
the interval. To include C++ code we use the command execute followed by the symbols
“[>” and “<]” . For instance, when the START function is called, it executes the C++ code
between those symbols, that is, a C++ method called “Move” of the object “camera” with
parameters “posA” and “posB” . These classes, variables, and objects are defined in separated
C++ files that are linked together with the code generated by the interval script compiler.

The definition of the STATE function is slightly different. In this case, the function is defined
to set the state of the interval to be equal to the PNF-value returned by the execution of the
C++-code. In the case depicted in fig. 3, a method for the object “camera” determines if the
computer graphics camera is moving or not. If true, the state of the interval is set to now,
referred in the C++-code by the special constant “_N_” ; otherwise, the state is set to be past
OR future, symbolized by “P_F” . We similarly define the constants “P__” , “__F” , “PN_” ,
“_NF” , and “PNF” . The last constant stands for past OR now OR future, that is, there is no
information available about the interval.

“ camera moves” =
{
 START: execute [> camera.Move(posA,posB); <];
 STOP: execute [> camera.Stop(); <];
 STATE: set-state pnf-expression
 [> (camera.isMoving() ? _N_ : P_F) <];
}.

Figure 3. Interval describing the movement of the camera character.

4.3 Putting Constraints between Intervals
Let’s examine how temporal constraints are defined. Continuing the example of fig. 3,
suppose that after the camera moves, it should zoom, that is, move forward towards the user.
Also, we would like that the camera movement to be accompanied by the sound of a pre-
recorded file.

Figure 4 shows the script corresponding to the situation. It contains three intervals (whose
definition, using C++ inline code, is omitted for clarity). The interval declarations are
followed by two statements establishing temporal constraints between intervals. In the first, it
is declared that “ camera moves” should meet with the interval “ camera zooms” . Notice the
syntax better-if which was chosen to imply that this is a constraint that will be tried to be
enforced but that is not guaranteed to occur.

Figure 5 shows a possible occurrence of the two intervals.

The last line of the script in fig. 4 establishes a constraint between the intervals “ camera
moving sound” and “ camera moves” . They should always start together and but the former
interval can end before or at the same time as “ camera moves” . Figure 5 renders the two
possible occurrences of “ camera moving sound” in order to respect the constraint start OR
equal.

4.4 Defining on Previous Intervals
Although the ability to include references to external code is very important, a key feature that
we want to introduce with interval scripts is the possibility of defining a new interval solely
based on other intervals. With this we can create hierarchies, abstract concepts, and develop
complex, high-level scripts.

Continuing with our example, we have the situation where when the user makes a pose (as
detected by a computer vision system) and the camera has finished moving and zooming, the

“ camera moves” ={ . . . }.

“ camera zooms” ={ . . . }.

“ camera moving sound” = { . . . }.

better-if “camera moves” meet “camera zooms”.

better-if “camera moving sound” start OR equal “camera moves”.

Figure 4. Script with temporal constraints.

start

equal

meet

OR

camera moves

camera zooms

camera moving sound

Figure 5. Diagram of the temporal constraints in the script of fig. 4.

camera “clicks” and “ takes” a picture. Figure 6 shows the script corresponding to this
interaction.

Initially the interval “ user is posing” is defined as before, by reference to C++ code that
communicates with the vision system. Then we define the interval “ ready to click” that has
only a STATE function. The state of the interval is determined by checking the state of two
previously defined intervals: if “ camera zooms” is in the past state and “ user is posing” is
happening than the state is set to now, otherwise is undetermined (PNF).

To accomplish the clicking of the camera and the “ fake” taking of the picture the interval
“ camera clicks” is defined, again through invocation of C++ code. We want that whenever
“ read to click” starts, the camera takes the picture. This is established by the constraint start
OR equal OR i-start that forces the two intervals to start together. That is, when the “ ready to
click” assumes the state now (by examining the state of its two defining intervals), the
propagation of temporal constraints will request “camera clicks” to be running. In response to

“ camera moves” ={ . . . }.
“ camera zooms” ={ . . . }.

“ camera moving sound” = { . . . }.

better-if “camera moves” meet “camera zooms”.

better-if “camera moving sound” start OR equal “camera moves”.

“ user is posing” =

 { STATE: set-state pnf-expression
 [> (user.isMoving() ? _N_ : P_F) <]; }.

“ ready to click” =
{ STATE: if “camera zooms” is past
 AND “user is posing” is now
 set-state now
 endif. }.

“ camera clicks” = { . . . }.

better-if “ready to click” start OR equal OR i-start ... “camera clicks”.

Figure 6. Scripting based on previously defined intervals.

camera clicks

ready to click

camera zooms
camera moves

camera moving sound

user is posing

“camera zooms” is past

start OR equal OR i-start

Figure 7. A possible occurrence of the script described in fig. 6.

that the run-time engine can call the START function of “ camera clicks” for as many cycles
as needed until the state of this interval also becomes now.

A typical occurrence (start) is depicted in the diagram of fig. 7. Notice that “ ready to click” is
now in the intersection between “ user is posing” and the time after “ camera zooms” is
finished.

4.5 Mutually Exclusive Actions
We want to improve the scene described above by not allowing the taking of pictures if the
user is moving. This is the classical case of mutually exclusive intervals mentioned earlier.
Using interval scripts the expression of such constraints is easily accomplished by adding the
following lines to the script of fig. 6:

“ user is moving” = { . . . }.

better-if “camera clicks” before OR after “user is
moving”.

Here the interval “ user is moving” communicates with the vision system and assumes the
state now if the user is not perceived as moving around. Then, a constraint is established
determining that moving and clicking never happen at the same time.

Figure 8 shows three possible occurrences of the interval “ user is moving” . The first two,
before or after “ camera clicks” , are compatible with “ camera clicks” . The third occurrence
overlaps with “ camera clicks” and is not compatible. In this case, since by definition “ user is
moving” is only a STATE function and can not be stopped, the run-time system will not call
the START function of “ camera clicks” , preventing the undesirable situation to happen. To
better understand how this happens, it is necessary first to examine how the run-time engine
actually works, what is described in the next section.

5. THE INTERVAL SCRIPT ENGINE
As we see from above an interval script associates actions and states of an interactive
environment to a collection of intervals with temporal constraints between them. In this
section we explain the process that triggers the call of START and STOP functions. The basis
of this process is a method described in [30] called PNF propagation. A good account of the
theoretical foundations of PNF propagation as well as a more detailed analysis of the
algorithms to be presented here can be found in [28]. In this paper we provide just the basic
ideas of the method that we judged necessary to apprehend the possibilities and strengths of
interval scripts.

camera clicks

ready to click

camera zooms
camera moves

camera moving sound user is posing

user is moving (1)
user is moving (2)

before OR after

user is moving (3)

� �

Figure 8. Possible occurrences of "user is moving".

We start by observing that given an interval script we have two different kinds of information:
how to compute the state, start, and stop each interval as represented in the basic functions;
and the temporal constraints between them. The collection of temporal constraints constitute
what is called an interval algebra network [2], that is, a network where the nodes are intervals
and the temporal constraints are links between them. Figure 9.a displays the interval algebra
network associated with the script of fig. 4.

5.1 First Step: Allen’s Closure
To prepare an interval algebra network for run-time execution, we start by tightening the
temporal relations by running Allen’s path consistency algorithm (see [2]) on the network.
The result is a network where the implied temporal relations are detected and explicitly
incorporated to the network. For example, by looking at fig. 5 and fig. 9, we can see that since
the interval “ camera moving sound” starts or is equal to “ camera moves” , and that “ camera
moves” meets with “ camera zooms” , there are only two possible relations between “ camera
moving sound” and “ camera zooms” , before OR meet. As shown in fig. 9, this is
automatically detected by Allen’s algorithm. Unfortunately, detecting all the possible implied
relations is NP-hard (as shown in [39]). However, Allen’s path consistency computes a very
good, conservative, approximation in most practical cases [2], and it is polynomial in the
number of constraints.

Traditional constraint satisfaction in interval algebra networks tries to determine for each
network node the sets of time intervals (pairs of real numbers describing segments of the real
line) that are compatible with the constraints given the known occurrence of some intervals.
An assignment of time intervals that satisfies the constraints is called a solution of the
network. Given a network node, the set of all time intervals for that node that belongs to at
least one solution is called the minimal domain of the node. Notice that if the minimal domain
of a node contains a given instant of time then the node can be happening at that time, and if
all the time intervals contain that given instant of time then the node must be happening at the
given moment.

This observation constitutes the basic principle of our run-time engine. However, direct
constraint propagation is NP-hard due to the combinatorial explosion involved in the
manipulation of sets of intervals (see [39]). To overcome this difficulty we devised an
optimization scheme called PNF propagation comprising two mechanisms, PNF restriction
and time expansion.

5.2 PNF Restr iction
The idea of simplifying interval algebra networks was first proposed by Pinhanez and Bobick
in [29]. The key observation was that for control and recognition purposes there is almost no
information coming from the duration of the intervals. Instead, the focus is to determine if an

camera moves

camera zooms

camera moving sound

start OR
equal

meet camera moves

camera zooms

camera moving sound

start OR
equal

meet

before OR
meet

a) Original network. b) After Allen’ s path consistency.

Figure 9. Interval algebra network associated with the scr ipt of fig. 4
before and after path consistency.

interval has happened (past), is happening (now), or is still to happen (future). Based on this
idea, we project the interval network into a similar network where the nodes corresponding to
the intervals can assume only one of the three symbols, past, now, or future — a PNF-
network. In [28] the properties and efficient ways to project and manipulate these networks are
detailed. Here we present the theory in a more intuitive form.

To simplify notation, let’s define the set M of subsets of past,now,future
� �

M = ∅{ ,{ } ,{ } ,{ } ,{ } ,{ } ,

{ } ,{ } }

past now future past,now now,future

past,future past,now,future

whose elements are abbreviated as M P N F PN NF PF PNF= ∅{ , }, , , , , ,

Now, consider that any information coming from STATE functions is translated into an
element of M. For instance, an interval that is known to be happening has state N. On the other
hand, intervals that are known to be not happening can be assigned the value PF, that is, they
either already happened or will happen.

Given a primitive temporal relation r between two nodes A and B of a PNF-network, the
values of the nodes must satisfy the constraints depicted in table 1. The construction of the
table is justified in [28] but it should be noticed that the values correspond to our intuitive
notions of past, now, and future. If the temporal constraint is a disjunction of primitive
temporal primitives, we simply take the union of the values corresponding to the primitives.
Using table 1, we define a solution of a PNF-network to be an assignment of values that
satisfies the constraints of the table, and the minimal domain of a node as the set of all values
that belong to at least one solution.

Given an initial set of values for each node, we call the restriction of a PNF-network the
process of computing the minimal domain of the network restricted to the initial values. That
is, restriction eliminates all the values that are incompatible with any solution. We call any
initial set of values as a component domain of the PNF-network, and the restriction of a
component domain W as R W

� �
. Notice that if the minimal domain of any node is ∅ , then

there are no solutions for the network.

Figure 10 shows a simple example of PNF restriction. The initial set of values for each node is
shown between parenthesis and the values after restriction appears on the right side of the
arrows. In this case, the fact that “ camera moves” is happening requires the interval “ camera
zooms” to be in the future, according to the value for meet in table 1. In the case of “ camera

Table 1. Admissible values for primitive
temporal relations in a PNF-network.

r A={P} A={N} A={F}

equal P N F
before PNF F F

i-before P P PNF
meet PN F F
i-meet P P NF
overlap PN NF F

i-overlap P PN NF
start PN N F
i-start P PN F
during PN N NF

i-during P PNF F
finish P N NF

i-finish P NF F

admissible values of B when A r B

camera moves

camera zooms

camera moving sound

start OR
equal

meet

before OR
meet

N N
R� �

→

NF N
R� �

→

PNF F
R� �

→
i-start OR

equal

Figure 10. An example of PNF restriction.

moving sound” , it is easier to examine the inverse relation (implied in the graph, and
automatically computed by Allen’s algorithm) i-start OR equal. According to table 1, the
admissible values for “ camera moving sound” are PN and N, respectively. Considering that
the initial value of “ camera moving sound” is NF the only value that can belong to any
solution is N. Notice that given solely the information that “ camera moves” is happening and
that “ camera moving sound” has not finished (NF), it is possible to infer from the temporal
constraints that “ camera moving sound” is, in fact, happening now, and that “ camera zooms”
is still to happen (future).

Computing the minimal domain of a PNF-network is, however, still a NP-hard problem
(see [11]). Instead, we have been using in our applications a conservative approximation to the
minimal domain based on the computation of the arc-consistency (as proposed by
Mackworth [21]) of the PNF-network. The main advantage is that arc-consistency is O n

� �
 in

the number of constraints n.

The procedure in fig. 11 shows an algorithm that computes the maximal arc-consistent
network under a component domain W. This is a version of the arc-consistency algorithm AC-
2 proposed in [21] and adapted to the component domain notation. The algorithm uses the
function F which given a PNF state and a set of primitive relations, returns a PNF state that
satisfies table 1.

In [28]we prove that this algorithm is sound and linear in the number of constraints. We also
show that arc-consistency produces a reasonable approximation of the minimal domain. In
fact, in our experiments we have encountered few situations where they were actually
different (see [28]for details).

5.3 Time Expansion and PNF Propagation
From the way the interval now is defined, it is clear that PNF-restriction deals exclusively
with determining feasible options of an action at a given moment of time. The question is
how much information from one moment of time can be carried to the next?

Input: a PNF-network with nodes w w wn1 2, , ,� and temporal constraints

Pij ; a component domain, W Wi i
= � � representing the initial state

of the nodes.

Output: AC W
� �

, the maximal arc-consistent component domain that is
contained in W

 initialize a queue Q with all wi such as Wi ≠ PNF (1)

 W W← (2)
 while Q ≠ ∅ (3)
 w pop Q0 ← () (4)
 for each node wi (5)

 X F W Pi i← 0 0
,

� �
 (6)

 if W X Wi i≠ ∩ (7)

 W X Wi i← ∩ (8)

 push w Qi ,
� �

 (9)

 return W (10)

Figure 11. Algorithm to compute arc-consistency.

In fact, information from the previous time step can be used to constrain the occurrence of
intervals in the next instant. For example, after an interval is determined to be in the past, it
should be impossible for it to assume another PNF-value, since, in our semantics, the
corresponding action is over. Similarly, if the current value of the interval is now, in the next
instant of time it can still be now, or the corresponding action might have ended, when the
interval should be past. To capture these ideas, we define a function that time-expands a
component domain into another that contains all the possible PNF-values in the next instant of
time.

Formally, given the PNF-state of a variable in time, we want to define a function Τ , called the
time expansion function, that considers a component domain W t at time t and computes the
component domain W Wt t+ =1 Τ

� �
 at time t + 1 by considering what the possible states are in

t + 1 . To define that function, we start by defining a time expansion function τ m for each

element of { }past,now,future , such as:

τ τ τm m mP PN NFpast now future
� � � � � �

= = =

Notice that τ m assumes that between two consecutive instants of time there is not enough
time for an interval to start and finish. That is, if a node has a value future at time t, it can only
move to now, but never straight to the past state at time t + 1 . Based on τ m , we define the
function that expands the elements of M , Τm M M: → as being the union of the results of
τ m ,

Τ Ω
Ω

m m

� � � �
=

∈

τ ω
ω

�

and the time expansion of a component domain W, Τm U U: → (abusing the notation), as the
component-wise application of the original Τm on a

W Wi i
=

� �
, Τ Τ Τ Τm m m m nW W W W

� � � � � � � �� �
= 1 2, , ,	

To use time expansion, we typically make the initial component domain W 0 as being
composed only of PNF states, W PNF

i

0 =
� �

. Then, for each instant of time t, we can

determine through sensor information or external sources the PNF-state of some of the
variables. Next, we create the component domain V t containing all these known values and
assigning PNF for the other variables. Then, given the previous component domain W t −1 , we
can compute an upper bound of the current minimal domain of the PNF-network by making
(see the proof in [28])

W R W Vt
m

t t= ∩−Τ 1
� �
 �

We call this process PNF propagation. Notice that the more information contained in V t , the
smaller is W t . In the extreme case, if V t is the minimal domain, then W t is also the minimal
domain. In most cases, however, we will have V t providing new information which is filtered

through the intersection with the past information (safely provided by Τm
tW −1

�
). Then,

information incompatible with the structure of the problem is removed by restriction, through
the computation of the minimal domain. In practice, we have been employing the arc-
consistency as defined in fig. 11 instead of the restriction to assure that computation occurs in
linear time.

5.4 Run-Time Engine Architecture
The formulation of PNF propagation described above was developed considering basic
problems of action recognition [30]. For running interval scripts in the critical conditions of
interactive environments we had to change some aspects in order to encompass some desired
features. First, pure PNF propagation cannot recover from errors. Once an interval is assigned
the past state it remains with that value. Second, as mentioned above, it may take time for
intervals do actually start and stop; while waiting for this to happen, the run-time system
might detect states with no solutions. For instance, if intervals A and B should meet, the end of
A triggers the call for the START function of B, but while that does not happen we have a
situation that can not be satisfied by any value of the nodes.

The solution for these issues is the decoupling of wish and reality alluded above. Notice that,
by design, an interval script describes the situations that should happen but not the
intermediate, unexpected states. The handling of those is left for the run-time engine.

Figure 12 shows a diagram of a cycle of the run-time engine. The main component is the
current state S t at time t that contains the current state of all intervals in the associated PNF-
network. It is important to notice that, unlike PNF propagation, the current state is not affected
by time expansion or PNF restriction.

Each cycle t is composed of the following four stages:

I. Determining the Current State: all the STATE functions are called and the engine
waits until all are the results are reported back and stored in the component domain S t .
For this computation, the STATE functions are allowed to use the previous states of
any other interval, available in the previous component domain S t −1 . After this stage,
the current state S t remains unchanged for the rest of the cycle.

II. PNF Propagation: in this stage the engine tries to determine what changes can be made
so in the next cycle, t + 1, the constraints are satisfied. Unlike in the original time
expansion, we consider for expansion only those intervals that can be started or
stopped,

() () if the interval has STARTor STOP functions

 otherwise

t
m it

m i
t
i

S i
S

S

ΤΤ =

Using this definition, this stage PNF-propagates the current state, by computing 1t
iP +

I

Determining
Current State

PNF
Propagation Thinning

Taking
Action

current state StSt-1

Pt+1 Dt+1

call STATE functions return of STATE functions call START,STOP functions

II III IV

St St St

St+1

Figure 12. One cycle of the interval script engine.

P R St
m

t+ =1 Τ ()
� �

III. Thinning: the result of stage II is normally too big and undetermined. To have a more
specific forecast of the next stage, we apply an heuristic where the current state of an
interval should remain the same unless (1) it contradicts the result of the PNF-
propagation and (2) the final result is still feasible. This is accomplished by taking a
special intersection operation between the prevision of the next state Pt +1

 and the
current state St . For each node the special intersection is computed by

S P
S P S P

P
i
t

i
t i

t
i
t

i
t

i
t

i
t

� � �
+

+ +

+
=

≠ ∅
�� ��
�1

1 1

1

 if

otherwise

The result is them passed through PNF restriction to assure that there are solutions and to
remove impossible states,

Dt +1 = R St �
Pt +1()

IV. Taking Action: The result of thinning, Dt +1, is compared to the current state St , and
START and STOP functions are called if a need to change the state of an interval is
needed. This follows the following table:

action

F N, PN START
N P STOP
F P STOP

x Si
t⊆ 1t

iD +

For example, if the current state of interval i can be future, F Si
t⊆ , and the desired state is

now, D Ni
t+ =1 , then the START function of the interval is called.

The interval script language provides mechanisms by which a START or a STOP function
can set the state of an interval for the next cycle t + 1. This was included to facilitate some
constructions. In the diagram, this is show as a dashed arrow bringing results from the run
of the START and STOP functions to St +1 .

Figure 13 shows an example of run of the interval script of fig. 4. In the first instant of the
run, t=0, the state S0 of all intervals is F. Although the result of PNF propagation, P1 ,
allows the first two intervals to be either in the now or in the future states, the result of the
thinning process, D1 , suggests to keep the state as it is and no action to be taken. In the
next instant of time, t=1, the interval “ camera moves” starts, as detected by its STATE
function. When PNF propagation is run, the fact that “ camera moves” and “ camera
moving sound” should start together constrains the desired state of the later interval to be
N, and provokes a call for its START function. In the next instant, t=2, we assume that
“ camera moving sound” is already running, and therefore all the constraints are satisfied.
The system remains in this state up to t=9.

When t=10, “ camera moves” finishes and assumes the P state. Because of the constraints,
“ camera moving sound” should stop and “ camera zooms” should start. Notice that the result
of PNF propagation, P11 , shows exactly that configuration, and the appropriate actions are
taken. In t=11 the desired state is reached for both intervals; if it was not the case, we would
have a state similar to t=10, and the START and STOP functions would be called again.
Finally, “ camera zooms” ends at t=21 and all intervals assume the past state.

5.5 Surviving Conflicts and Errors
An interval script describes an interaction as it should happen. The example shown above is a
simple situation where no conflict is happening. However, conflicts happen commonly and in
the run-time engine they are detected by the PNF restriction algorithm. Unfortunately, like any
constraint propagation method, it is impossible to detect which individual interval or
constraint is the source of the problem.

To handle conflicts we included in the engine some recovery mechanisms that are employed
in the case the restriction algorithm finds that the PNF network has no solutions. They are
included in the following stages:

II- PNF Propagation: if the computation of P R St
m

t+ =1 Τ ()
� �

 detects no solution, the engine

tries to enlarge the space of possibilities by using simple PNF propagation, that is,
expanding all states regardless of the existence of START or STOP functions,

P R St
m

t+ =1 Τ ()
� �

.

Although this normally handles most problems, there are situations where sensors report
incorrectly and produce a state with no solutions. In those extreme cases, the engine
simply time-expands the current state without computing the restriction, P St

m
t+ =1 Τ () .

III- Thinning: if the computation of ()1 1tt tD R S P+ += � yields a state with no solutions, we

simply ignore the restriction, D S Pt t t+ +=1 1�
. Normally this prevent any action to be taken

since the states of 1tP + tend to be not as thin as required to call start and stop functions.

camera moving sound

start
equal

meet

OR

camera moves

camera zooms

t= 0 1 2 10 11 21

START
sound

STOP
sound

START
zoom

.

S 0 P 1 D 1 S 1 P 2 D 2 S 2 P 3 D 3 S 10 P 11 D 11 S 11 P 12 D 12 S 21 P 22 D 22

camera moves F NF F N PN N N PN N P P P P P P P P P
camera moving sound F NF F F N N N PN N N P P P P P P P P
camera zooms F F F F F F F NF F F N N N PN N P P P

t=11 t=21
interval

t=0 t=1 t=2 t=10

Figure 13. Example of a run of the interval script of fig. 4.

These methods to recover from errors have been designed and tested in our applications. The
basic principle is to avoid taking actions so problems do not cascade.

An example of a conflict situation is show in fig. 14. Here, we consider the case where the
intervals “ camera clicks” and “ user is moving” are defined as mutually exclusive and a
situation where both were expected to happen is occurring. At t=31, a conflict is detected by
the PNF propagation stage since there is no way to satisfy the requirements that “ camera
clicks” should start together with “ ready to click” and while “ user is moving” is occurring. In
this situation the first level of recovery succeeds and find a set of states that is compatible with
the constraints as show in fig. 14. However, P32 is quite non-specific and the thinning process
basically keep the current situation as it is, without taking any action. Later, at t=37, when
“ user is moving” finishes, and since “ ready to click” is still happening, “ camera clicks” is
started.

As we see, the run-time engine of interval scripts was designed to avoid halts by searching for
feasible states with the less amount of change. This strategy is not guaranteed to succeed
always but has been proving to be robust enough to run quite complex structures. We are
currently working on better methods to overcome contradictions such as keeping a history of
previous states for backtracking purposes and devising mechanisms to detect and isolate the
source of conflicts.

In [28] we describe in details these features of the interval scripts language. Also, we present
other features of the language such as: (1) the declaration of nested intervals; (2) a simple
implementation of timers; (3) the possibility of defining START and STOP function based on
previously defined intervals; (4) handling of events; (5) a simple method to re-run intervals
and the action or sensor activity associated to them; (6) mechanisms to represent and
recognize complex human actions (based on [29]; and (7) mechanisms to contextualize action
and sensing activity. The combination of all these features make the interval scripts language
extremely expressive, as shown in the many examples described in [28] and in the projects
described in the next section.

user is moving

start
equal

before OR after

OR
ready to click

camera clicks

t=30 31 37 38

START
click

. . . .

OR
i-start

S 30 P 31 D 32 S 31 P 32 P 32 D 32 S 37 P 38 D 38 S 38 P 39 D 39

ready to click F F F N N N N N N N N N N
camera clicks F F F F F F F N N N PN N
user is moving N N N N N N N P P P P P P

t=38
interval

t=30 t=31 t=37

∅

Figure 14. Example of run with conflict.

6. WORKING WITH INTERVAL SCRIPTS
Evaluating a scripting method or a programming language is always difficult. We believe that
the previous exposition of the basic structures of interval scripts has provided evidence for our
claim of simplicity.

The experiments listed below are evidence towards our belief that the language is more
expressive than current paradigms. We do not see how these systems (especially the last two)
could have been programmed using, for instance, event-loops without major problems in
debugging, execution, and maintenance. Particularly, the control structure of the systems
described was developed in very short periods of time. Based on these experiments, we argue
that our main objectives when designing intervals scripts were achieved, that is, that the
paradigm provides expressiveness and simplicity beyond current scripting methods.

The first two experiments, “ SingSong” and “ It/I” , are interactive theatrical performances
where human and autonomous computer-graphics actors interact following a story. They
constitute what is called computer theater, a term referring to live theatrical performances
involving the active use of computers in the artistic process (in [27] Pinhanez details the
concept of computer theater, the origins of the term, and related works). Our research in
computer theater has concentrated on building automatic, story-aware computer-actors able to
interact with human actors on camera-monitored stages.

6.1 “ SingSong” : a First Experiment
“ SingSong” was our first experiment with interval scripts [31]. “ SingSong” is composed of a
large video screen that displays four computer graphics-animated characters that can “sing”
musical notes (as produced by a MIDI synthesizer). A camera watches the user or performer
determining the position of his/her head, hands, and feet. The body position is recovered by
the software pfinder developed at the MIT Media Laboratory [41].

All the interaction is physical, non-verbal: the user or performer gestures and the CG-
characters sing notes and move. There is a CG-object — a pitching fork — which the user
employs during one of the scenes. “ SingSong” is an environment which immerses the
performer in the following simple story which unfolds as the interaction proceeds:

Singers of a chorus (the CG-creatures) are animatedly talking to each other. The
conductor enters and commands them to stop by raising her arms. One of the singers
— #1 — keeps talking until the conductor asks it to stop again. Singer #1 stops but
complains (by expanding and grudging sounds). Following, a pitching fork appears
on the screen and the conductor starts to tune the chorus: he points to a singer and
“ hits” the pitching fork by moving his arm down. Any singer can be tuned at any time.
However, singer #1 does not get tuned: it keeps giving back the conductor a wrong
note until the conductor knees down and pleads for its cooperation. After all the
singers are tuned, a song is performed. The conductor controls only the tempo: the
notes are played as he moves her arms up. When the song is finished, applause is
heard, and when the conductor bows back the singers bow together with him. Just
after that singer #1 teases the conductor again and the singers decide to go back to
talking to each other.

“ SingSong” was produced and performed in the summer of 1996. Although it is a short play
of about 4 minutes, the interval script involved around 70 intervals (although the resulting
PNF network was three times bigger) and included a great deal of low-level control of I/O
devices. It took about two days of work to write and debug the script. More details can be
found in [31]. Figure 15 shows a sequence of scenes from “ SingSong” .

6.2 “ I t / I ” : a Computer Theater Play
Following “ SingSong” we decided that it was
necessary to develop a real test both for the idea of
computer theater and for interval scripts.
Particularly, we were interested whether a
computer-actor could sustain the interest of an
audience for long periods of time, enough to go
beyond the novelty of the technology and to
achieve real dramatic content. On the other hand
we were interested in testing the robustness of the
interval script paradigm in a condition where
difficulties in scripting or run-time failures would
be critical.

With these ideas in mind, one of the authors of
this paper, Claudio Pinhanez, wrote the computer
theater play “ It/I” . The play is a pantomime where
one of the characters, “ It” , has a non-human body
composed of CG-objects projected on screens (see
fig. 16). The objects are used to play with the
human character, “ I” . “ It” speaks through images
and videos projected on the screens, through
sound played on stage speakers, and through the
stage lights.

The play is composed of four scenes, each being a
repetition of a basic cycle where “ I” is lured by
“ It” , is played with, gets frustrated, quits, and is
punished for quitting. For example, the second
scene of the play is :

“ I” is sitting on the stage, indifferent
to everything, bathed by blue light. To
attract his attention, “ It” projects a

Figure 15. Scenes from " SingSong" .

Figure 16. Scene from “ I t/I ” . The computer
graphics object on the screen is autonomously
controlled by the computer character I t.

picture of a wedding on the stage screen. When “ I” pays attention to the picture, the
image is removed from the screen, the lights change, and a CG-object similar to a
photographic camera appears on the other screen, following “ I” as he moves around.
When “ I” makes a pose, the camera shutter opens with a burst of light and the
corresponding clicking sound. Following, a CG-television appears on the other
screen and, when “ I” gets close, it starts to display a “ slide show” composed by
silhouette images “ taken” by the camera. After some pictures are shown, the camera
“ calls” “ I” to take another picture. This cycle is repeated until “ I” refuses to
continue to play with the machine and remains in front of the television; this refusal
provokes an irate reaction from “ It” , which throws CG-blocks at “ I” while storming
the stage with lights and playing harsh loud noises. Then, “ I” is left on a desolated,
silent stage.

The above segment exemplifies the complexity of the interaction in a typical scene of “ It/I” .
The scenes have a complexity level quite beyond previous full-body interactive systems [20,
22]. The play was produced in the summer/fall of 1997 and performed six times for a total
audience of about 500 people. Each performance, lasting 40 minutes, was followed by an
explanation of the workings of the computer-actor. After that members of the audience were
invited to go up on stage and play the second scene from the play, first in front of the
audience, and individually afterwards.

The interval script of each scene contained approximately 100 intervals (for a total of about
400 in the whole play). The development of the interval script took approximately two weeks
including here rehearsal time.

6.3 “ I t” : an Interactive Installation
When the spectators went on the stage to re-enact the scene from “ It/I” they displayed a
variety of reactions. Some of them could easily remember the sequence of actions in the play
and could navigate through the scene without external help but others were partially confused
about what to do.

To overcome these problems we decided to re-create the environment of the play “ It/I” in a
version for users called “ It” . Inhabited by the I t character, the space tries to trap the user
inside it, under the disguise of a game of taking and showing pictures. “ It” uses the same
visual (images, computer graphics) and sound elements as “ It/I” , but it was designed to be a
self contained, stand-alone piece that can be enjoyed by users completely unfamiliar with the
play. The construction of the installation “ It” was finished in March of 1999 in a laboratory

Figure 17. Scenes from a run of “ I t” .

space at the MIT Media Laboratory. Since then there have been dozens of users experiencing
the feeling of being trapped by It. Figure 17 shows pictures of a user playing in “ It” .

“ It” employs 4 control modules (following the SCD architecture as described in [26]). The
most complex module runs an interval script composed of more than 200 intervals. All the
examples of interval scripts shown in this paper come from the script of “ It” . They already
incorporate some of the significant improvements in the interval script language that were
developed after the experience with “ It/I” .

7. FUTURE DIRECTIONS
Although the interval script language is already reaching a stable state, there is still work to be
done in at least three different directions. First, we would like to get the system to a state
where it could be released to other researchers and designers interested in using interval
scripts to build interactive systems. We expect to reach this level soon. In this context it
becomes possible to evaluate how difficult the language is to be learned and which features
different kinds of designers would like to have added to the language.

Second, we want to investigate which is the ideal interface for the paradigm: text-based or
graphical. In the case of a graphical interface, a possible approach is to allow the user to
construct temporal diagrams similar to fig. 17. However, since we allow disjunction of
temporal constraints there are always multiple possibilities for the temporal arrangement of
the intervals what might create more confusion than provide help. Nevertheless, we found
always useful to draw the diagrams while thinking about the temporal constraints.

Finally, we would like to integrate into the interval script language mechanisms that represent
actions in forms that the machine can reason about. Our work described [28], based on Roger
Schank’s [32] conceptualizations, is a serious candidate for such a representation.

8. CONCLUSION
In this paper we propose the interval script paradigm for scripting interaction that is based on
declarative programming of temporal constraints. Unlike previous constraint-based languages,
we employed a strong temporal algebra with mutually exclusive intervals. Through the
examples written in the interval script language we have shown that the paradigm allows good
expressiveness and significantly facilitates the management of context, story, and history in an
interactive environment.

From the experience acquired in the use of the language for the implementation of three
different projects, we believe that scripting systems incorporating the interval script paradigm
can significantly ease the design and building of interactive systems.

ACKNOWLEDGEMENTS
“ SingSong” was produced at ATR Media Integration and Communication Laboratories in
Kyoto, Japan. The performance was written, directed, and performed by Claudio Pinhanez.
“ It / I” was produced at the MIT Media Laboratory and performed at the Villers Experimental
Facility. The play was written and directed by Claudio Pinhanez, and produced by Aaron
Bobick; the crew was composed by John Liu, Chris Bentzel, Raquel Coelho, Leslie Bondaryk,
Freedom Baird, Richard Marcus, Monica Pinhanez, Nathalie van Bockstaele, and the actor
Joshua Pritchard. Claudio Pinhanez was partially supported by a scholarship from CNPq,
process number 20.3117/89.1.0

REFERENCES
[1] Director's User Manual. MacroMind Inc. 1990.

[2] J. F. Allen. “Maintaining Knowledge about Temporal Intervals” , Communications of the ACM,
vol. 26 (11), pp. 832-843. 1983.

[3] B. Bailey, J. A. Konstan, R. Cooley, and M. Dejong. “Nsync - A Toolkit for Building Interactive
Multimedia Presentations”, Proc. of ACM Multimedia'98, Bristol, England, pp. 257-266. 1998.

[4] J. Bates, A. B. Loyall, and W. S. Reilly. “An Architecture for Action, Emotion, and Social
Behavior” , Proceedings of the Fourth European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, S. Martino al Cimino, Italy. July. 1992.

[5] B. B. Bederson and A. Druin. “Computer Augmented Environments: New Places to Learn, Work
and Play” , Advances in Human-Computer Interaction, vol. 5. Ablex, Norwood, New Jersey. 1995.

[6] B. M. Blumberg and T. A. Galyean. “Multi-Level Direction of Autonomous Agents for Real-Time
Virtual Environments” , Proc. of SIGGRAPH'95. 1995.

[7] A. Bobick, S. Intille, J. Davis, F. Baird, C. Pinhanez, L. Campbell, Y. Ivanov, A. Schutte, and A.
Wilson. “The KidsRoom: A Perceptually-Based Interactive Immersive Story Environment” ,
PRESENCE: Teleoperators and Virtual Environments, vol. 8 (4), pp. 367-391. 1999.

[8] R. Brooks. “ Intelligence without Reason”, Artificial Intelligence, vol. 47, pp. 139-159. 1991.

[9] M. C. Buchanan and P. T. Zellweger. “Automatic Temporal Layout Mechanisms” , Proc. of ACM
Multimedia'93, Ahaheim, California, pp. 341-350. August. 1993.

[10] M. H. Coen. “Building Brains for Rooms: Designing Distributed Software Agents” , Proc. of
IAAI'97, Providence, Connecticut, pp. 971-977. August. 1997.

[11] R. Dechter. “From Local to Global Consistency” , Artificial Intelligence, vol. 55 (1), pp. 87-107.
1992.

[12] C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi. “TBAG: A High Level Framework for
Interactive, Animated 3D Graphics Applications”, Proc. of SIGGRAPH'94, Orlando, Florida, pp.
421-434. July 24-29. 1994.

[13] T. A. Galyean. Narrative Guidance of Interactivity. Ph.D. Thesis. Media Arts and Sciences
Program: Massachusetts Institute of Technology, Cambridge, Massachusetts. 1995.

[14] R. Hamakawa and J. Rekimoto. “Object Composition and Playback Models for Handling
Multimedia Data” , Proc. of ACM Multimedia'93, Ahaheim, California, pp. 273-281. August. 1993.

[15] M. Johnson, A. Wilson, C. Kline, B. Blumberg, and A. Bobick. “Sympathetic Interfaces: Using a
Plush Toy to Direct Synthetic Characters” , Proc. of CHI'99, Pittsburgh, Pennsylvania. May. 1999.

[16] M. Jourdan, N. Layaida, C. Roisin, L. Sabry-Ismail, and L. Tardif. “Madeus, an Authoring
Environment for Interactive Multimedia Documents” , Proc. of ACM Multimedia'98, Bristol,
England, pp. 267-272. September 12-16. 1998.

[17] K. I. Kakizaki. “Generating the Animation of a 3D Agent from Explanation Text” , Proc. of ACM
Multimedia'98, Bristol, England, pp. 139-144. 1998.

[18] J. K. Kalita. Natural Language Control of Animation of Task Performance in a Physical Domain.
Ph.D. Thesis. Department of Computer and Information Science: University of Pennsylvania,
Philadelphia, Pennsylvania. 1991.

[19] M. Y. Kim and J. Song. “Multimedia Documents with Elastic Time” , Proc. of ACM
Multimedia'95, San Francisco, California, pp. 143-154. November. 1995.

[20] M. W. Krueger. Artificial Reality II. Addison-Wesley. 1990.

[21] A. K. Mackworth. “Consistency in Networks of Relations” , Artificial Intelligence, vol. 8 (1), pp.
99-118. 1977.

[22] P. Maes, T. Darrell, B. Blumberg, and A. Pentland. “The ALIVE System: Full-Body Interaction
with Autonomous Agents” , Proc. of the Computer Animation'95 Conference, Geneva, Switzerland.
April. 1995.

[23] I. Meiri. “Combining Qualitative and Quantitative Constraints in Temporal Reasoning”,
Artificial Intelligence, vol. 87 (1-2), pp. 343-385. 1996.

[24] R. Pausch, T. Burnette, A. C. Capeheart, M. Conway, D. Cosgrove, R. DeLine, J. Durbin, R.
Gossweiler, S. Koga, and J. White. “A Brief Architectural Overview of Alice, a Rapid
Prototyping System for Virtual Reality” , IEEE Computer Graphics and Applications. 1995.

[25] K. Perlin and A. Goldberg. “ Improv: A System for Scripting Interactive Actors in Virtual
Worlds” , Proc. of SIGGRAPH'96. August. 1996.

[26] C. Pinhanez. “The SCD Architecture and its Use in the Design of Story-Driven Interactive
Spaces” , Proc. of 1st Internation Workshop on Managing Interactions in Smart Environments
(MANSE'99), Dublin, Ireland. 1999.

[27] C. S. Pinhanez. “Computer Theater” , Proc. of the Eighth International Symposium on Electronic
Arts (ISEA'97), Chicago, Illinois. September. 1997.

[28] C. S. Pinhanez. Representation and Recognition of Action in Interactive Spaces. Ph.D. Thesis.
Media Arts and Sciences Program: Massachusetts Institute of Technology. 1999.

[29] C. S. Pinhanez and A. F. Bobick. “PNF Propagation and the Detection of Actions Described by
Temporal Intervals” , Proc. of the DARPA Image Understanding Workshop, New Orleans,
Louisiana. May. 1997.

[30] C. S. Pinhanez and A. F. Bobick. “Human Action Detection Using PNF Propagation of Temporal
Constraints” , Proc. of CVPR'98, Santa Barbara, California, pp. 898-904. June. 1998.

[31] C. S. Pinhanez, K. Mase, and A. F. Bobick. “ Interval Scripts: A Design Paradigm for Story-
Based Interactive Systems” , Proc. of CHI'97, Atlanta, Georgia, pp. 287-294. March. 1997.

[32] R. C. Schank. “Conceptual Dependency Theory” , in Conceptual Information Processing. North-
Holland. pp. 22-82. 1975.

[33] K. C. Selcuk, B. Prabhakaran, and V. S. Subrahmanian. “CHIMP: A Framework for Supporting
Distributed Multimedia Document Authoring and Presentation” , Proc. of ACM Multimedia'96,
Boston, Massachusetts, pp. 329-339. November. 1996.

[34] C. Shaw, M. Green, J. Liang, and Y. Sun. “Decoupled Simulation in Virtual Reality with the
MR Toolkit” , ACM Transactions on Information Systems, vol. 11 (3), pp. 287-317. 1993.

[35] N. M. Thalmann and D. Thalmann. Synthetic Actors in Computer Generated 3D Films. Springer-
Verlag, Berlin, Germany. 1990.

[36] N. Tosa, H. Hashimoto, K. Sezaki, Y. Kunii, T. Yamada, K. Sabe, R. Nishino, H. Harashima, and
F. Harashima. “Network-Based Neuro-Baby with Robotic Hand”, Proc. of IJCAI'95 Workshop on
Entertainment and AI/Alife, Montreal, Canada. August. 1995.

[37] X. Tu and D. Terzopoulos. “Artificial Fishes: Physics, Locomotion, Perception, Behavior” , Proc.
of SIGGRAPH'94, Orlando, Florida, pp. 43-50. July 24-29. 1994.

[38] G. van Rossum, J. Jansen, K. Mullender, and D. Bulterman. “CMIFed: a Presentation
Environment for Portable Hypermedia Documents” , Proc. of ACM Multimedia'93, California.
1993.

[39] M. Vilain and H. Kautz. “Constraint Propagation Algorithms for Temporal Reasoning” , Proc. of
AAAI'86, Philadelphia, Pennsylvania, pp. 377-382. 1986.

[40] S. Wirag. “Modeling of Adaptable Multimedia Documents” , Proc. of the European Workshop on
Interactive Distributed Multimedia Systems and Telecommunications Services, Darmstadt.
September. 1997.

[41] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. “Pfinder: Real-Time Tracking of the
Human Body” , IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19 (7), pp. 780-785.
1997.

